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Maintaining geostationary satellites within tight orbital parameters is essential for continu-
ous, high-quality services and reduced operational costs. Traditional station-keeping methods
often rely on scheduled maneuvers and extensive ground intervention, limiting flexibility and
adaptability. To address these limitations, this thesis proposes an autonomous Deep Reinforce-
ment Learning (DRL) framework designed to discover optimal control policies specifically for
geostationary Earth orbit (GEO) maintenance. By accurately modeling the orbital environment
at GEO in MATLAB—including high-fidelity spherical-harmonic gravity, solar radiation pres-
sure, and solar/lunar third-body effects—the DRL agent is trained in a realistically perturbed
environment and learns to autonomously apply minimal corrective maneuvers without relying
on explicit scheduling. This rigorous perturbation modeling contributes to more reliable
policy performance under real-world conditions, improving station-keeping precision and fuel
efficiency over low-fidelity baselines. This DRL-based station maintenance approach aims to
establish a robust, fuel-efficient, and fully autonomous method for managing geostationary
orbits, minimizing operational burdens, and extending satellite mission lifetimes.

I. Introduction
Geostationary orbits have played a critical role in modern satellite communication since their conceptualization.

The idea was popularized by science fiction writer Arthur C. Clarke in the 1940s, who envisioned these orbits as
revolutionary platforms for global telecommunications. Clarke recognized the unique property of geostationary orbits:
satellites placed approximately 35,786 kilometers above Earth’s equator match the planet’s rotational period, allowing
them to maintain a constant position relative to observers on the ground. This concept became a reality when the first
geostationary satellite, Syncom 3, was successfully launched in 1963. Since then, satellites in geostationary orbits have
become integral to communication networks, weather monitoring, broadcasting, navigation, and various other essential
services.

Maintaining satellites in precise geostationary positions is increasingly critical due to the densely populated nature of
this limited orbital region. Any orbital drift or perturbation-induced displacement can lead to communication interference,
degraded service quality, operational inefficiencies, or even mission failure [1]. Perturbations such as gravitational
anomalies arising from Earth’s uneven mass distribution [2], solar radiation pressure [3], and gravitational influences
from the Moon and Sun [4] continuously challenge satellite orbit stability. Consequently, periodic station-keeping
maneuvers are necessary to correct these deviations and ensure operational integrity [5].

Traditional station maintenance, which involves periodic maneuver scheduling and extensive ground-based
intervention, faces limitations in flexibility, responsiveness, and cost-effectiveness. As space activities escalate and
orbital slots become more crowded, conventional methods struggle with these dynamic and increasingly complex
environments [6]. The manual planning and execution of these corrective maneuvers often result in significant
operational overhead and suboptimal resource use, highlighting the need for more autonomous, adaptable strategies [7,
8].

Autonomous station-keeping methods, particularly advanced techniques utilizing Deep Reinforcement Learning
(DRL), present promising solutions to these limitations. DRL enables satellites to dynamically and autonomously adapt
to perturbations in real-time without pre-scheduled interventions. Recent research has shown DRL’s potential [9] in
trajectory planning [10], low-thrust orbit insertion maneuvers [10], and general spacecraft guidance [12], illustrating the
method’s versatility in aerospace applications. Through reinforcement learning, a satellite can continuously improve its
orbit maintenance strategy based on environmental feedback, optimizing fuel usage and potentially extending mission
lifetimes significantly.

The research presented here introduces a novel autonomous DRL-based framework. By combining advanced
DRL methods with high-fidelity orbital modeling in MATLAB, this research addresses both practical and economic
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challenges inherent in traditional station-keeping methods. The proposed autonomous framework aims not only to
reduce operational burdens but also to offer robust and fuel-efficient solutions suitable for the demanding environment
of geostationary orbit management.

II. Environment Modeling
This section outlines the methodological approach employed to create the environment in which the DRL agent

can learn, detailing the satellite dynamics modeling, which forms the foundation for the development of a robust
station-keeping framework.

In reality, geostationary satellites are subject to a variety of perturbative forces that drive their orbital elements away
from ideal values. At GEO altitude, the dominant perturbations are Earth’s non-spherical gravity field, solar radiation
pressure, and third-body gravitational pulls from the Sun and Moon [3]. Figure 1 provides a conceptual illustration of
the station-keeping challenge: perturbations push the satellite outside its nominal ±0.05◦ geodetic confinement box,
requiring periodic corrective impulses.

GEO radius

nominal

drift

perturbations

Fig. 1 Conceptual illustration of perturbed satellite at GEO

To capture these real-world effects quantitatively, we introduce higher-fidelity orbital models in the subsequent
subsections, beginning with spherical-harmonic gravity.

A. Spherical Harmonics
The Earth is not a perfect sphere, but rather an oblate spheroid with variations in its mass distribution [1]. To

account for these irregularities in Earth’s gravitational potential, we use spherical harmonics [2]. This model expands
the gravitational potential 𝑉 as an infinite series of harmonics (Equation (1)), allowing for greater accuracy. The
gravitational potential in spherical harmonics is expressed as:

𝑉 =
𝜇

𝑟

∞∑︁
𝑙=0

( 𝑎𝑐
𝑟

) 𝑙 𝑙∑︁
𝑚=0

𝑃𝑙,𝑚 (sin 𝜙)
(
𝐶𝑙,𝑚 cos(𝑚𝜆) + 𝑆𝑙,𝑚 sin(𝑚𝜆)

)
(1)

where:
• 𝑟 is the radial distance from the Earth’s center,
• 𝑎𝑐 is the Earth’s equatorial radius,
• 𝜙 is the geocentric latitude,
• 𝜆 is the geocentric longitude,
• 𝑃𝑙,𝑚 are the associated Legendre polynomials,
• 𝐶𝑙,𝑚 and 𝑆𝑙,𝑚 are the spherical harmonic coefficients for degree 𝑙 and order 𝑚.

The associated acceleration due to the spherical-harmonic gravity field is simply the gradient of 𝑉 . Equation (2) forms
the basis for our high-fidelity gravity model.

aSH = ∇𝑉. (2)
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The primary term in this expansion corresponds to the simple two-body potential𝑉 =
𝜇

𝑟
, which assumes a spherically

symmetric Earth. However, the aSH encapsulates all the 𝐽2, 𝐽3, . . . perturbations through the harmonic coefficients
𝐶𝑙,𝑚, 𝑆𝑙,𝑚.

B. Solar Radiation Pressure
Solar Radiation Pressure (SRP) is a perturbative force caused by the momentum transfer from sunlight as it strikes

a satellite. The calculation of SRP begins by determining the position of the Sun relative to the satellite. Using the
ephemeris data for the Sun, the satellite’s position vector r relative to the Sun is obtained [4]. The force due to solar
radiation is computed based on the distance between the Sun and the satellite, as well as the solar flux at that distance.

To account for variations in solar intensity due to Earth’s elliptical orbit, the solar flux 𝑆𝐹 is calculated using
Vallado’s formulation [3]:

𝑆𝐹 =
1358

1.004 + 0.0334 cos(days from aphelion) (3)

where 1358 W/m2 is the average solar flux at 1 AU, and the denominator accounts for variations in solar distance.
The solar radiation pressure 𝑝𝑆𝑅𝑃 is then given by:

𝑝𝑆𝑅𝑃 =
𝑆𝐹

𝑐
(4)

where 𝑐 is the speed of light in a vacuum.
The resulting acceleration on the satellite due to SRP is calculated as [3]:

a𝑆𝑅𝑃 = −𝑐𝑅 · 𝑝𝑆𝑅𝑃 · 𝐴sat
𝑚sat

rrel,Sun

|rrel,Sun |
(5)

where:
• 𝑐𝑅 is the satellite’s reflectivity coefficient,
• 𝐴sat is the cross-sectional area exposed to sunlight,
• 𝑚sat is the mass of the satellite,
• rrel,Sun is the vector from the satellite to the Sun.
This acceleration acts in the direction opposite to the vector from the satellite to the Sun, gradually altering the

satellite’s orbit over time.

C. Third-Body Perturbations from the Moon and Sun
Additionally, third-body gravitational effects from the Sun and Moon introduce further perturbations. The

gravitational acceleration on the satellite due to a third body is described by [3]:

a3𝐵 = − 𝜇⊕r⊕𝑠𝑎𝑡
𝑟3
⊕𝑠𝑎𝑡

+ 𝜇3

(
r𝑠𝑎𝑡3
𝑟3
𝑠𝑎𝑡3

− r⊕3

𝑟3
⊕3

)
(6)

where:
• ⊕ Denotes Earth,
• 3 Denotes the third-body (Sun or Moon),
• sat Denotes the satellite,
Having detailed each of the principal perturbative forces—Earth’s non-spherical gravity field, solar radiation

pressure, and third-body influences from the Sun and Moon—shown below:

a = aSH + aSRP + a3B. (7)

we now assess their combined impact on a geostationary satellite’s orbital elements. Figure 2 presents the time evolution
of semi-major axis, eccentricity, and inclination when all perturbations act simultaneously. The gradual divergence from
their initial values underscores why continuous station-keeping maneuvers are essential, and motivates the autonomous
DRL strategy developed in this work.
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Fig. 2 Propagation of orbital elements with the inclusion of perturbations.

III. DRL Framework and Markov Decision Process (MDP)
Given the demonstrated divergence from desired orbital parameters, a unique DRL framework was developed within

MATLAB to autonomously explore and learn the complex orbital dynamics environment. By interacting with a carefully
constructed high-fidelity simulation environment, the agent learns to maintain the desired geostationary orbit through
the efficient application of impulsive maneuvers.

A. MATLAB Simulation Environment
All satellite dynamics are propagated using MATLAB’s built-in ode45 solver, which employs an adaptive

Runge–Kutta scheme to accurately capture the motion. At each decision epoch, the DRL agent selects an impulsive
𝚫V vector that is applied directly to the satellite’s velocity state; following this instantaneous “kick,” ode45 resumes
integration from the updated state for a duration determined by the agent’s adaptive time-stepping policy. This
loop—perturbed dynamics → agent action → velocity update → ode45 propagation—enables seamless modeling of
impulsive maneuvers within a high-fidelity environment. The use of ode45 is particularly appropriate here because it is
a standard astrodynamics tool, offering robust error control, and wide community validation.

B. MDP Definition
To formalize the station-keeping problem for the DRL agent, we define the underlying Markov Decision Process

(MDP) as follows:

States At each decision instant the agent observes a 9-dimensional state vector:

s𝑡 =
[
Δ̃𝑎, Δ̃𝑒, Δ̃𝑖, 𝜆, 𝐹NS, 𝐹EW, 𝜃asc, 𝜃desc, 𝜈EW

]⊤
, (8)

where
• Δ̃𝑎, Δ̃𝑒, Δ̃𝑖 are the semi-major axis, eccentricity, and inclination deviations normalized by their station-keeping

bounds,
• 𝜆 is the satellite’s geocentric longitude,
• 𝐹NS, 𝐹EW are the remaining fuel fractions (normalized) allocated for north-south and east-west maneuvers,
• 𝜃asc, 𝜃desc are the normalized angular distances from the ascending and descending nodes,
• 𝜈EW is the normalized true anomaly relevant for east-west burns.
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Actions A unique method was employed to allow the agent to find and exploit fuel-efficient maneuvers. The agent
issues a 6-dimensional action:

a𝑡 =
[
𝑢NS, 𝑢EW, Δ𝑉𝑥 , Δ𝑉𝑦 , Δ𝑉𝑧 , 𝜏

]⊤
, (9)

where
• 𝑢NS, 𝑢EW ∈ [0, 1] are decision flags for north-south and east-west burns,
• Δ𝑉𝑥 ,Δ𝑉𝑦 ∈ [−Δ𝑉max,EW, Δ𝑉max,EW] and Δ𝑉𝑧 ∈ [−Δ𝑉max,NS, Δ𝑉max,NS] specify the Cartesian components of the

impulsive maneuver,
• 𝜏 ∈ [0, 1] is a “wait” scaler that determines the next propagation interval from 0.5 to 16 days.

Reward At each simulation time step 𝑡, the agent receives

𝑟𝑡 =


𝑟 track (𝑡), sub-steps of burn times 𝑡,

𝑟 track (𝑡) + 𝑟action (𝑡), at burn times 𝑡,
(10)

where
𝑟 track (𝑡) = −𝑤orbit ∥ΔEO(𝑡)∥ and 𝑟action (𝑡) = −

(
𝑤fuel∥ΔV(𝑡)∥ + 𝑤phase Φ(𝑡)

)
.

Here, ΔEO(𝑡) is the orbital-element error vector, ∥ΔV(𝑡)∥ is the impulsive burn magnitude when applied, Φ(𝑡) is an
orbital phase penalty at the burn location, and 𝑤orbit, 𝑤fuel, 𝑤phase > 0 are weighting factors.

The weights 𝑤orbit, 𝑤fuel, 𝑤phase and the precise forms of the states, actions, and rewards were designed based on
preliminary studies and will be systematically optimized in the full study.

DRL Agent Employed an off-policy, actor–critic Deep Deterministic Policy Gradient (DDPG) agent to handle the
continuous action and observation spaces inherent to station-keeping. A high-level workflow diagram (Figure 3)
illustrates how the agent’s policy and value networks interact with the MATLAB simulation environment to select and
evaluate impulsive maneuvers.

Fig. 3 Block diagram of workflow
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In the full paper, the trained DRL agent will be evaluated over multiple one-year simulation runs to quantify its
station-keeping performance. Key metrics include the ability of the satellite to remain within a ±0.05◦ geodetic latitude
and longitude confinement box, and the total 𝚫V expended per year (m/s/year). Successful performance is defined by
maintaining orbital deviations within the specified bounds while keeping annual fuel usage at or below the allocated
budget, thereby demonstrating both high positional accuracy and fuel efficiency.

Additionally, this study will evaluate the DRL agent’s robustness across multiple longitudinal slots in the geostationary
belt. Because Earth’s gravitational equilibrium points cause perturbation magnitudes to vary with longitude [3], we
will compare station-keeping performance and fuel requirements at several representative positions. These extensions
will demonstrate the generality of the autonomous framework under diverse orbital conditions and inform optimal
deployment strategies for real-world GEO missions.
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